(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
decrease(Cons(x, xs)) → decrease(xs)
decrease(Nil) → number42(Nil)
number42(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → decrease(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
decrease(Cons(x, xs)) → decrease(xs)
decrease(Nil) → number42(Nil)
number42(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → decrease(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
number42/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
decrease(Cons(xs)) → decrease(xs)
decrease(Nil) → number42
number42 → Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → decrease(x)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
decrease(Cons(xs)) → decrease(xs)
decrease(Nil) → number42
number42 → Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → decrease(x)
Types:
decrease :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
decrease
(8) Obligation:
Innermost TRS:
Rules:
decrease(
Cons(
xs)) →
decrease(
xs)
decrease(
Nil) →
number42number42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
decrease(
x)
Types:
decrease :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
decrease
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
decrease(
gen_Cons:Nil2_0(
n4_0)) →
gen_Cons:Nil2_0(
42), rt ∈ Ω(1 + n4
0)
Induction Base:
decrease(gen_Cons:Nil2_0(0)) →RΩ(1)
number42 →RΩ(1)
Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil))))))))))))))))))))))))))))))))))))))))))
Induction Step:
decrease(gen_Cons:Nil2_0(+(n4_0, 1))) →RΩ(1)
decrease(gen_Cons:Nil2_0(n4_0)) →IH
gen_Cons:Nil2_0(42)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
decrease(
Cons(
xs)) →
decrease(
xs)
decrease(
Nil) →
number42number42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
decrease(
x)
Types:
decrease :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
decrease(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(42), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
decrease(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(42), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
decrease(
Cons(
xs)) →
decrease(
xs)
decrease(
Nil) →
number42number42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
decrease(
x)
Types:
decrease :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
decrease(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(42), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
decrease(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(42), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)